Properly embedded, area-minimizing surfaces in hyperbolic 3-space

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Horocyclic Surfaces in Hyperbolic 3-space

Horocyclic surfaces are surfaces in hyperbolic 3-space that are foliated by horocycles. We construct horocyclic surfaces associated with spacelike curves in the lightcone and investigate their geometric properties. In particular, we classify their singularities using invariants of corresponding spacelike curves.

متن کامل

Flat surfaces in the hyperbolic 3-space

In this paper we give a conformal representation of flat surfaces in the hyperbolic 3space using the complex structure induced by its second fundamental form. We also study some examples and the behaviour at infinity of complete flat ends. Mathematics Subject Classification (1991): 53A35, 53C42

متن کامل

Complete Properly Embedded Minimal Surfaces in R3

In this short paper, we apply estimates and ideas from [CM4] to study the ends of a properly embedded complete minimal surface 2 ⊂ R3 with finite topology. The main result is that any complete properly embedded minimal annulus that lies above a sufficiently narrow downward sloping cone must have finite total curvature. In this short paper, we apply estimates and ideas from [CM4] to study the en...

متن کامل

Properly embedded surfaces with constant mean curvature

In this paper we prove a maximum principle at infinity for properly embedded surfaces with constant mean curvature H > 0 in the 3-dimensional Euclidean space. We show that no one of these surfaces can lie in the mean convex side of another properly embedded H surface. We also prove that, under natural assumptions, if the surface lies in the slab |x3| < 1/2H and is symmetric with respect to the ...

متن کامل

A Characterization of Weingarten Surfaces in Hyperbolic 3-space

We study 2-dimensional submanifolds of the space L(H) of oriented geodesics of hyperbolic 3-space, endowed with the canonical neutral Kähler structure. Such a surface is Lagrangian iff there exists a surface in H orthogonal to the geodesics of Σ. We prove that the induced metric on a Lagrangian surface in L(H) has zero Gauss curvature iff the orthogonal surfaces in H are Weingarten: the eigenva...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Geometry

سال: 2014

ISSN: 0022-040X

DOI: 10.4310/jdg/1406033978